130 research outputs found

    Crystal structure of the high-pressure phase of the oxonitridosilicate chloride Ce4[Si4O3 + xN7 − x]Cl1 − xOx, x≃0.2

    Get PDF
    The structural compression mechanism of Ce4[Si4O3 + xN7 − x]Cl1 − xOx, x≃ 0.2, was investigated by in situ single-crystal synchrotron X-ray diffraction at pressures of 3.0, 8.5 and 8.6 GPa using the diamond–anvil cell technique. On increasing pressure the low-pressure cubic structure first undergoes only minor structural changes. Between 8.5 and 8.6 GPa a first-order phase transition occurs, accompanied by a change of the single-crystal colour from light orange to dark red. The main structural mechanisms, leading to a volume reduction of about 5% at the phase transition, are an increase in and a rearrangement of the Ce coordination, the loss of the Ce2, Ce3 split position, and a bending of some of the inter-polyhedral Si—N—Si angles in the arrangement of the corner-sharing Si tetrahedra. The latter is responsible for the short c axis of the orthorhombic high-pressure structure compared with the cell parameter of the cubic low-pressure structure

    High-Pressure Phase Transition of the Oxonitridosilicate Chloride Ce4[Si4O3+xN7-x]Cl1-xOx with x = 0.12 and 0.18

    Get PDF
    The high-pressure behaviour of the oxonitridosilicate chlorides Ce4[Si4O3þxN7-x]Cl1-xOx, x = 0.12 and 0.18, is investigated by in situ powder synchrotron X-ray diffraction. Pressures up to 28 GPa are generated using the diamond-anvil cell technique. A reversible phase transition of first order occurs at pressures between 8 and 10 GPa. Within this pressure range the high- and the low-pressure phases are observed concomitantly. At the phase transition the unit cell volume is reduced by about 5%, and the cubic symmetry (space group P213) is reduced to orthorhombic (space group P212121) following a translationengleiche group-subgroup relationship of index 3. A fit of a third-order Birch-Murnaghan equation of state to the p-V data results in a bulk modulus B0 = 124(5) GPa with its pressure derivative B0 = 5(1) at V0 = 1134.3(4) Å3 for the low-pressure phase and in B0 = 153(10) GPa with B0 = 3.0(6) at V0 = 1071(3) Å3 for the high-pressure phase. The orthorhombic phase shows an anisotropic axial compression with the a axis (which is the shortest axis) being more compressible (k(a) = 0.0143(4) 1/GPa) than the b and c axes (k(b) = 0.0045(2), k(c) = 0.0058(2) 1/GPa). The experimental results confirm an earlier prediction of the pressureinduced instability of isotypic Ce4[Si4O4N6]O, and also show that the bulk modulus was predicted reasonably well

    Substitution, Eigenschaften und neue Strukturen silicatverwandter nitridischer Verbindungen

    Get PDF
    The thesis is addressing different aspects of the chemistry of silicate related nitridic compounds. One main focus was the investigation of the influence of substitution (cations, O/N, Si/Al, halides) on the material properties of the compounds. For this concern known compounds (nitridosilicates, sions, sialons) as well as a new class of compounds (oxonitridosilicate halides) were investigated. Very important for these investigations was the detailed characterisation of the synthesised compounds. In this context the establishment of an especially optimised microprobe technique has to be highlighted. The new technique allows the quantitative analyses of light elements as O, N, Cl and Si, Al, Br beside elements like Sr, Ba and the lanthanides. In addition a lot of different analytical tools were used to understand the crystal chemistry of the investigated systems, e.g. single-crystal x-ray analyses, powder neutron diffraction, XAS, EDX and spectroscopic methods, some of them also performed under high pressure. The second main focus of the work was the synthesis and characterisation of compounds with new crystal structures in the area of oxonitridosilicates, sions and sialons.In der vorliegenden Arbeit wurden unterschiedliche Aspekte der Chemie der silicatverwandten nitridischen Verbindungen untersucht. Ein Schwerpunkt der Arbeit lag in der Untersuchung der Auswirkungen von Kationen-, O/N-, Si/Al- und Halogenidsubstitution auf die Materialeigenschaften der Verbindungen. Hierbei wurden sowohl bereits bekannte (Nitridosilicate, Sione, Sialone) als auch neue Substanzklassen (Oxonitridosilicathalogenide) entdeckt und untersucht. Als besonders wichtig erwies sich die detaillierte Charakterisierung der dargestellten Verbindungen. Hervorzuheben ist in diesem Zusammenhang die Etablierung einer speziell optimierten Mikrosondenanalytik zur quantitativen Elementaranalytik (Seltenerd- und/oder Erdalkalimetall, Si, Al, O, N, Cl, Br). Zusätzlich wurden Methoden wie Einkristallstrukturanalyse, Pulverneutronenbeugung, XAS, EDX u.a., teilweise auch unter hohem Druck, angewendet. Der zweite Schwerpunkt der Arbeit lag in der Darstellung und Charakterisierung neuer Verbindungen auf dem Gebiet der Oxonitridosilicathalogenide, Sione und Sialone

    Compressibility of the nitridosilicate SrYb[Si4N7] and the oxonitridoaluminosilicates MYb[Si4−xAlxOxN7−x] (x = 2; M = Sr, Ba)

    Get PDF
    The compressibilities of the nitridosilicate SrYb[Si4N7] and the oxonitridoaluminosilicates MYb[Si4−xAlxOxN7−x] (x = 2; M = Sr, Ba) were investigated by in situ high-pressure X-ray powder diffraction. Pressures up to 42 GPa were generated using the diamond–anvil cell technique. The title compounds are structurally stable to the highest pressure obtained. A fit of a third-order Birch–Murnaghan equation-of-state to the p–V data results in V0 = 302.91 (6) Å3, B0 = 176 (2) GPa and B′ = 4.4 (2) for SrYb[Si4N7]; V0 = 310.4 (1) Å3, B0 = 161 (2) GPa and B′ = 4.6 (2) for SrYb[Si4−xAlxOxN7−x]; and V0 = 317.3 (5) Å3, B0 = 168 (2) GPa and B′ = 4.7 (2) for BaYb[Si4−xAlxOxN7−x]. While the linear compressibilities of the a and c axes of BaYb[Si4−xAlxOxN7−x] are very similar up to 30 GPa, distinct differences were observed for SrYb[Si4N7] and SrYb[Si4−xAlxOxN7−x], with the c axis being the most compressible axis. In all of the investigated compounds the bulk compressibility is dominated by the compression behaviour of the tetrahedral network, while the size of the substituted cation plays a minor role

    Coupled Al/Si and O/N order/disorder in BaYb[Si4–xAlxOxN7–x]sialon

    Get PDF
    The fractions of aluminium, [Al]/[Al + Si], and oxygen, [O]/[O + N], in crystallographically distinct sites of BaYb[Si4–xAlxOxN7–x] oxonitridoaluminosilicate (space group P63mc, No. 186) were refined based on the results of neutron powder diffraction for a synthetic sample with the composition of x = 2.2(2) and simulated as functions of temperature for the compositions x = 2 and x = 2.3 using a combination of static lattice energy calculations (SLEC) and Monte Carlo simulations. The SLEC calcu lations have been performed on a set of 800 structures differing in the distribution of Al/Si and O/N within the 2 × 2 × 2 supercell containing 36 formula units of BaYb[Si4–xAlxOxN7–x]. The SLEC were based on a transferable set of empirical interatomic potentials developed within the present study. The static lattice energies of these structures have been expanded in the basis set of pair-wise ordering energies and on-site chemical potentials. The ordering energies and the chemical potentials have been used to calculate the configuration energies of the oxonitridoaluminosilicates (so-called sialons) using a Monte Carlo algorithm. The simulations suggest that Al and O are distributed unevenly over two non-equivalent T(Si/Al) and three L(N/O) sites, respectively, and the distribution shows strong dependence both on the temperature and the composition. Both simulated samples exhibit order/disorder transitions in the temperature range 500–1000 K to phases with partial long-range order below these temperatures. Above the transition temperatures the Si/Al and N/O distributions are affected by short-range ordering. The predicted site occupancies are in a qualitative agreement with the neutron diffraction results

    A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects

    Get PDF
    BACKGROUND: The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. RESULTS: For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. CONCLUSIONS: Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing

    Data-driven analysis of simultaneous EEG/fMRI using an ICA approach

    Get PDF
    Due to its millisecond-scale temporal resolution, EEG allows to assess neural correlates with precisely defined temporal relationship relative to a given event. This knowledge is generally lacking in data from functional magnetic resonance imaging (fMRI) which has a temporal resolution on the scale of seconds so that possibilities to combine the two modalities are sought. Previous applications combining event-related potentials (ERPs) with simultaneous fMRI BOLD generally aimed at measuring known ERP components in single trials and correlate the resulting time series with the fMRI BOLD signal. While it is a valuable first step, this procedure cannot guarantee that variability of the chosen ERP component is specific for the targeted neurophysiological process on the group and single subject level. Here we introduce a newly developed data-driven analysis procedure that automatically selects task-specific electrophysiological independent components (ICs). We used single-trial simultaneous EEG/fMRI analysis of a visual Go/Nogo task to assess inhibition-related EEG components, their trial-to-trial amplitude variability, and the relationship between this variability and the fMRI. Single-trial EEG/fMRI analysis within a subgroup of 22 participants revealed positive correlations of fMRI BOLD signal with EEG-derived regressors in fronto-striatal regions which were more pronounced in an early compared to a late phase of task execution. In sum, selecting Nogo-related ICs in an automated, single subject procedure reveals fMRI-BOLD responses correlated to different phases of task execution. Furthermore, to illustrate utility and generalizability of the method beyond detecting the presence or absence of reliable inhibitory components in the EEG, we show that the IC selection can be extended to other events in the same dataset, e.g., the visual responses

    Poly[[diaqua-μ2-hydroxido-(μ7-2-phos­pho­nato­ethane­sulfonato)­dicopper(II)] trihydrate]

    Get PDF
    The crystal structure of the title compound, [Cu2(C2H4O6PS)(OH)(H2O)2]·3H2O, consists of two Cu2+ ions, one (O3PC2H4SO3)3− ion and one OH− ion, as well as five water mol­ecules, two of which are coordinated to Cu2+. The Cu2+ ions are coordinated by six O atoms. The CuO6 polyhedra are connected by μ- and μ3-O atoms into zigzag chains along the b axis. These chains are further connected by –CH2CH2– groups to form layers, in turn building a three-dimensional framework via hydrogen bonding
    corecore